Mechanical properties of acellular peripheral nerve.

نویسندگان

  • Gregory H Borschel
  • Kevin F Kia
  • William M Kuzon
  • Robert G Dennis
چکیده

BACKGROUND Acellular nerve has been used in experimental models as a peripheral nerve substitute. Our objective was to determine the difference in tensile strength between fresh and chemically treated acellularized peripheral nerve. MATERIALS AND METHODS F344 rat sciatic nerves were either fresh or acellularized and tested either whole (Part A) or transected and repaired (Part B). For all constructs, the mean ultimate stress, mean ultimate strain, Young's modulus, and total mechanical work to fracture were calculated. The average ultimate strains for Groups A-1 and A-2 were 0.480 +/- 0.117 and 0.810 +/- 0.114, respectively. The Young's moduli in Groups A-1 and A-2 were 576 +/- 160 and 580 +/- 150 kPa, respectively. In Groups A-1 and A-2, the normalized work to failure was 0.35 +/- 0.14 and 1.11 +/- 0.38 N. The specimens in Group B-1 withstood an average ultimate stress of 780 +/- 280 kPa. The specimens in Group B-2 withstood an average ultimate stress of 405 +/- 20 kPa. RESULTS The average ultimate strains for Groups B-1 and B-2 were 0.319 +/- 0.087 and 0.266 +/- 0.019, respectively. The Young's moduli in Groups B-1 and B-2 were 4,030 +/- 1360 and 2,290 +/- 280 kPa, respectively. The normalized work to failure in Groups B-1 and B-2 was calculated as 0.22 +/- 0.04 and 0.11 +/- 0.02 N. CONCLUSIONS Although adequately robust for reconstructive procedures, the acellular peripheral nerve had decreased tensile strength compared with fresh nerve either when tested whole or when transected and repaired.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of acellular sciatic nerve scaffold and it’s mechanical and histological properties for use in peripheral nerve regeneration

Background: Tissue engineering is a developing multidisciplinary and interdisciplinary field involving the use of bioartificial implants for tissue remodeling with the target for repair and enhancing tissue or organ function. Acellular nerve has been used in experimental models as a peripheral nerve substitute. The purpose of the present study was to evaluate the mechanical and histological cha...

متن کامل

Decellularisation and histological characterisation of porcine peripheral nerves

Peripheral nerve injuries affect a large proportion of the global population, often causing significant morbidity and loss of function. Current treatment strategies include the use of implantable nerve guide conduits (NGC's) to direct regenerating axons between the proximal and distal ends of the nerve gap. However, NGC's are limited in their effectiveness at promoting regeneration Current NGCs...

متن کامل

Induced-pluripotent stem cells seeded acellular peripheral nerve graft as “autologous nerve graft”

The hypothesis is that induced pluripotent stem cells (iPSC) derived Schwann cells and/or macrophages can be transplanted into acellular nerve graft in repairing injured nervous system. The efficiency of iPSC seeded acellular nerve graft may mimic the autologous peripheral nerve graft.

متن کامل

Axonal regeneration into acellular nerve grafts is enhanced by degradation of chondroitin sulfate proteoglycan.

Although the peripheral nerve has the potential to regenerate after injury, degenerative processes may be essential to promote axonal growth into the denervated nerve. One hypothesis is that the nerve contains growth inhibitors that must be neutralized after injury for optimal regeneration. In the present study, we tested whether degradation of chondroitin sulfate proteoglycan, a known inhibito...

متن کامل

Acellularized Peripheral Nerve Allograft Repopulated with Isogenic Schwann Cells: A Non-Immunogenic Construct that Supports Axonal Growth Across Short Nerve Gaps

Introduction: Reconstructive options for peripheral nerve gaps are currently limited. Autogenous nerve grafts continue to be the gold standard, but are limited by the availability of graft material. All other methods of nerve grafting are either experimental or have limited clinical applicability. We propose developing a tissue engineered peripheral nerve allograft that is non-immunogenic but c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of surgical research

دوره 114 2  شماره 

صفحات  -

تاریخ انتشار 2003